配置说明

状态指示灯

电源开/关LED状态	含义
关	电源关闭
亮红灯	目标物信号弱或超出量程
亮绿灯	传感器操作正常,目标物状态良好

输出/示教LED状态	含义	
关	目标物超出窗口检测范围	
亮黄灯	目标物在窗口检测范围内	
亮红灯	传感器进入示教模式并等待示教第一个位置	
红灯闪烁	传感器进入示教模式并等待示教第二个位置	

传感器编程

使用两种示教方法中的一种来为传感器编程:

- 示教单独的最低位置和最高位置
- 使用"自动窗口"功能以指定位置为中心自动分配一个检测窗口尺寸

传感器可以通过其按键或通过远程示教线进行编程。远程示教线也可以用来禁用按钮,防止未经授权的人员更改编程设置。 为了实现这一功能,将传感器的灰色线连接到0v dc到2v dc,进行远程编程控制。

注意: 远程示教输入的阻抗为12 kΩ。

编程是通过输入等时的脉冲信号来完成的。每个脉冲(对应一个按钮 "点击")的持续时间和多个脉冲之间的周期定义为"T": **0.04 秒< T < 0.8 秒。**

最小 操作 范围 近点 返点 変数出 を顕数出 を顕数出 を顕数出 を顕数出 を顕数出 を 系: 灭: 死: 死: 死: 死: 死: 女: 紅色

图1. 示教界面

模拟量输出斜率

U-GAGE S18U传感器可以设置模拟量输出的斜率为正或为负,其根据首先被示教的检测位置。如果首先示教近点检测位置,则斜率为正。如果首先示教远点检测位置,斜率将是负的。

在信号丢失的情况下,模拟量输出值为3.6 mA或0v dc,可用于触发告警。

图 2. 模拟量输出斜率-电流型号

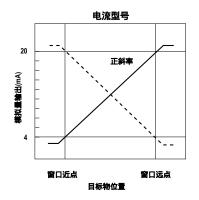
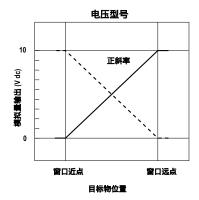



图 3. 模拟量输出斜率-电压型号

示教最近和最远检测位置

注意:

- 如果第一个示教条件没有在120秒内确定,传感器返回到运行模式。
- 在第一个检测位置被示教后,传感器将保持在编程模式,直到示教流程完成。
- 按住编程按钮超过2秒(在示教第二个检测位置之前),传感器退出编程模式,并不保存任何更改。此时传 感器恢复到上一次保存的检测位置。

1. 进入编程模式。

方法	步骤	结果	
按键 2	长按TEACH键	输出 LED: 亮红灯 电源 LED: 亮绿灯 (良好的信号) 或亮红的	
远程示教线 3	不需要动作;传感器已准备好第一个检测位置的 示教	一 电源 LEU: 克绿灯 (良好的信号) 或克红的 (无信号)	

- 2. 将目标物放置在第一个检测位置。 电源LED必须亮绿灯。
- 3. 示教第一个检测位置。

方法	步骤	结果
按键	短按TEACH键一次	示教成功 (传感器将0V dc或4mA对应检测位置) 输出 LED: 红灯闪烁
远程示教线	远程示教线发送单个脉冲信号	示教不成功 输出 LED: 亮红灯

- 4. 将目标物放置在第二个检测位置。电源LED必须亮绿灯。
- 5. 示教第二个检测位置。

方法	步骤	结果
按键	短按TEACH键一次	示教成功 (传感器将10V dc或20 mA对应检测位 置)
远程示教线	远程示教线发送单个脉冲信号	输出 LED: 亮黄灯或熄灭 示教不成功 输出 LED: 红灯闪烁

使用自动窗口模式示教检测位置

示教相同的位置两次,自动生成以该示教位置为中心的10毫米的窗口。.

^{2 0.04} s < "点击" < 0.8 s 3 0.04 s < T < 0.8 s

注意:

- 如果第一个示教条件没有在120秒内确定,传感器返回到运行模式。
- 在第一个检测位置被示教后,传感器将保持在编程模式,直到示教流程完成。
- 按住编程按钮超过2秒(在示教第二个检测位置之前),传感器退出编程模式,并不保存任何更改。此时传感器恢复到上一次保存的检测位置。
- 使用此步骤,模拟量输出的中心位置在大约5v dc或12ma的示教位置

1. 进入编程模式。

方法	步骤	结果
按键 4	长按TEACH键	输出 LED: 亮红灯 电源 LED: 亮绿灯 (良好的信号) 或亮红的
远程示教线 5	不需要动作;传感器已准备好第一个检测位置的 示教	(无信号)

- 2. 将目标物放置在窗口的中心 , 电源LED必须亮绿灯。
- 3. 示教该位置。

方法	步骤	结果
按键	短按TEACH键一次	示教成功 输出 LED: 红灯闪烁
远程示教线	远程示教线发送单个脉冲信号	·····································

4. 示教第二个检测位置。

方法	步骤		结果
按键	不移动目标物,再次短按TEACH键一次	1	示教成功 输出 LED: 黄色或关闭
远程示教线	不移动目标物,远程示教线发送单个脉冲信号		示教不成功 输出 LED: 红灯闪烁

传感器的按键锁定

启用或禁用按钮,以防止未经授权的人员调整程序设置。